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The role of polygenic risk and susceptibility genes
in breast cancer over the course of life
Nina Mars 1, Elisabeth Widén1, Sini Kerminen 1, Tuomo Meretoja2,3, Matti Pirinen 1,4,5,

Pietro della Briotta Parolo1, Priit Palta 1,6 & FinnGen*, Aarno Palotie1,7,8, Jaakko Kaprio 1,5, Heikki Joensuu3,9,

Mark Daly1,8 & Samuli Ripatti 1,5,8✉

Polygenic risk scores (PRS) for breast cancer have potential to improve risk prediction, but

there is limited information on their utility in various clinical situations. Here we show that

among 122,978 women in the FinnGen study with 8401 breast cancer cases, the PRS modifies

the breast cancer risk of two high-impact frameshift risk variants. Similarly, we show that

after the breast cancer diagnosis, individuals with elevated PRS have an elevated risk of

developing contralateral breast cancer, and that the PRS can considerably improve risk

assessment among their female first-degree relatives. In more detail, women with the

c.1592delT variant in PALB2 (242-fold enrichment in Finland, 336 carriers) and an average

PRS (10–90th percentile) have a lifetime risk of breast cancer at 55% (95% CI 49–61%),

which increases to 84% (71–97%) with a high PRS ( > 90th percentile), and decreases to

49% (30–68%) with a low PRS ( < 10th percentile). Similarly, for c.1100delC in CHEK2 (3.7–

fold enrichment; 1648 carriers), the respective lifetime risks are 29% (27–32%), 59% (52–

66%), and 9% (5–14%). The PRS also refines the risk assessment of women with first-degree

relatives diagnosed with breast cancer, particularly among women with positive family his-

tory of early-onset breast cancer. Here we demonstrate the opportunities for a compre-

hensive way of assessing genetic risk in the general population, in breast cancer patients, and

in unaffected family members.
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In women, breast cancer is the most commonly diagnosed
cancer and the leading cause of cancer-related deaths1.
Approximately 5–10% of all breast cancers are estimated to

develop due to high-impact germline mutations in breast cancer
susceptibility genes, with up to 30% due to pathogenic mutations
in BRCA1 and BRCA2 and with a smaller proportion carrying
mutations in other susceptibility genes, such as PTEN, TP53,
CHEK2, PALB2 and STK112. While pathogenic mutations in
BRCA1 and BRCA2 are less common in Finns3, two frameshift
mutations, c.1592delT (rs180177102) in PALB2 and c.1100delC
(rs555607708) in CHEK2 have an unusually high allele frequency
in Finland, which provides a unique opportunity to explore the
impact of these mutations in the population. PALB2 (Partner and
Localizer of BRCA2) encodes a key tumour suppressor protein
that functions through affecting BRCA2 nuclear localisation and
DNA damage response functions, and through interacting with
BRCA14. The second gene, CHEK2 (Checkpoint kinase 2), is a
tumour suppressor gene encoding a serine/threonine-protein
kinase involved in DNA repair, cell cycle arrest and apoptosis5.

Beyond genetic predisposition caused by high-risk mutations
in breast cancer susceptibility genes, breast cancer has a highly
polygenic mode of inheritance. Large-scale genetic screens have
to date identified over a hundred loci associated with risk of
breast cancer6. These variants, and many more yet to be dis-
covered, represent common genetic variation acting through a
wide range of molecular pathways, in contrast to the rare, high-
risk pathogenic variants in high-risk breast cancer susceptibility
genes that often disrupt a specific pathway involved in main-
taining integrity of DNA repair processes. Individually, the
common variants have very small effect sizes with odds ratios
usually ranging from 0.85 to 1.20, but their cumulative impact in
breast cancer risk has been shown to be considerably larger7. This
cumulative effect can be captured in a single measure by a
polygenic risk score (PRS), the summed contribution of many
common risk variants, which is able to identify women at over 3-
fold risk of breast cancer, compared to women with an average
risk7,8. By improving identification of these women at high risk of
breast cancer, it could serve as a new tool for personalised, risk-
based breast cancer screening7,9,10.

Here, we comprehensively assess the impact of germline
genetic variation on risk of breast cancer and show (1) how a high
breast cancer PRS compares to high-risk mutations in breast
cancer susceptibility genes, (2) how the PRS modifies the risk of
breast cancer in women carrying pathogenic mutations in the
PALB2 and CHEK2 genes and (3) that the PRS has utility for
informing about risk of contralateral breast cancer, and about the
risk in first-degree relatives. We use data from the FinnGen study,
which combines nationwide health registries with genomic
information for 122,978 women from across the country, repre-
senting 5% of the Finnish adult female population.

Results
We studied 122,978 women in FinnGen, with the mean age at the
end of follow-up 58.5 (inter-quartile range, IQR 45.1–72.2, range
16.0–106.0). In FinnGen, 8401 (6.8%) women have been diag-
nosed with breast cancer, with mean age at disease onset of 58.6
(IQR 50.4–66.3, range 21.3–98.3 years). We first tested the
association of three polygenic risk scores on breast cancer risk: a
313 SNP score7, a genome-wide score by Mars et al.10 derived
using LDpred software and a new genome-wide score derived
using PRS-CS11. In our data, the genome-wide scores out-
performed the 313 SNP score with hazard ratio (HR) estimates
per standard deviation at 1.55 (95% confidence interval, CI
1.52–1.58), 1.63 (CI 1.60–1.67) and 1.71 (CI 1.68–1.75) of the PRS
for 313 SNP score, LDpred score and PRS-CS score, each scaled

separately to mean zero and unit variance. We therefore chose the
PRS built with PRS-CS for subsequent analyses (Table 1 and
Supplementary Table 1).

We then studied the allele frequencies, geographic variation
and risk estimates for the two Finnish-enriched, high-impact
breast cancer mutations. The allele frequency for rs180177102
(PALB2) was 0.0014 (242-fold enrichment compared to non-
Finnish non-Estonian Europeans, NFEE12), with 336 hetero-
zygote mutation carriers included in the analyses. The allele fre-
quency for rs555607708 (CHEK2) was 0.0064 (3.7 times enriched
in Finns compared to NFEE), with 1641 heterozygotes and 7
homozygote individuals.

Geographic variation of genetic risk. Considering Finns have
passed internal genetic bottlenecks, we first aimed to characterise
any geographic distribution for both the PALB2 and CHEK2
mutations, and for the PRS. Both the PALB2 and CHEK2
mutations had more carriers in Eastern Finland, with the pro-
portion of carriers ranging from close to 0 in Western Finland, to
2.8% for CHEK2 in South Karelia and to 0.8% for PALB2 in
North Karelia (Fig. 1). In contrast, we observed slightly higher
proportions of individuals with high PRS in Western and
Southern Finland, in line with breast cancer incidence.

The effect of frameshift mutations in PALB2 and CHEK2. Both
PALB2 and CHEK2 conferred considerably elevated risk for
breast cancer (Table 2). The PALB2 variant conferred a risk
increase for breast cancer with a HR of 4.99 (95% CI 4.02–6.20,
p= 6.76 × 10−48), corresponding to a lifetime risk by age 80 of
56.1% (95% CI 50.8–61.4%). The CHEK2 variant conferred a risk
increase for breast cancer with HR 2.19 (95% CI 1.91–2.51),
p= 3.90 × 10−29), corresponding to a lifetime risk of 31.7% (95%
CI 29.5–33.9%). Comparing to women with a PRS between the
10th and 90th percentiles (lifetime risk 15.5%, 95% CI
15.3–15.7%), women with PRS above the 90th percentile had a
similar effect size as CHEK2 mutation carriers (HR 2.38, 95% CI
2.26–2.50, p= 1.98 × 10−230) and their similar lifetime risk was
similar (32.5%, 95% CI 31.6–33.4%). However, a high PRS
affected a nearly 7-fold larger group of women (Table 1; results
excluding first-degree relatives in Supplementary Table 2). Esti-
mating these while accounting for competing risks (non-breast
cancer related death) yielded 4.6%, 4.9% and 3.2% lower estimates
for lifetime risks in carriers of the PALB2 and CHEK2 mutations,
and women with high PRS, respectively (Supplementary Figs. 1–3
and Supplementary Table 3).

PRS modifies the risk in PALB2 and CHEK2 mutation carriers.
Next, we estimated how the PRS modifies breast cancer risk in the

Table 1 Comparison of effect sizes for three polygenic risk
scores (PRS) with and without excluding the PALB2 and
CHEK2 loci and regions around them.

HR (95% CI) PALB2 and
CHEK2 included

HR (95% CI) PALB2 and
CHEK2 excluded

PRS313 1.55 (1.52–1.58) 1.54 (1.51–1.57)
PRSLDpred 1.63 (1.60–1.67) 1.59 (1.55–1.62)
PRSCS 1.71 (1.68–1.75) 1.71 (1.68–1.75)

Out of the three PRSs tested, the PRS built with the software PRS-CS had the strongest
association with breast cancer, and was therefore chosen for our analyses. Each PRS was scaled
separately to mean zero and unit variance to obtain hazard ratios (HR) per standard deviation.
To have a PRS independent of the PALB2 and CHEK2 variants, we excluded the variants within
the CHEK2 gene ±3Mb, and variants within the PALB2 gene ±2Mb.
CI confidence interval, PRS313 a PRS with 313 genetic variants, with 260 variants polymorphic in
FinnGen, PRSLDpred a PRS built with the software LDpred, PRSCS a PRS built with the software
PRS-CS.
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mutation carriers. For both PALB2 and CHEK2, a high PRS
further increased the breast cancer risk. In terms of lifetime risk
for breast cancer by age 80, women with the PALB2 mutation and
average PRS (10–90th percentile) had a lifetime risk of 55.3%
(95% CI 49.4–61.2%), which increased to 83.9% (71.2–96.6%)
among women with a high PRS (>90th percentile), and decreased
to 49.1% (30.6–67.6%) in women with a low PRS (<10th per-
centile; Fig. 2 and Tables 3 and 4). Women with CHEK2 and an
average PRS had a lifetime risk of 29.3% (95% CI 26.8–31.8%)
which doubled to 59.2% (52.1–66.3%) in women with a high PRS
and decreased to 9.3% (4.5–14.1%) in women with low PRS.

To test for possible interaction between mutation carriers and
the PRS, we first compared the PRS effect size in pooled mutation
carriers (PALB2 and CHEK2) and in non-carriers. In both carriers
and non-carriers, hazard ratios for the top and bottom decile of
the PRS were very similar (reference group PRS 10–90%; Table 5).
This was observed also in PALB2 and CHEK2 mutation carriers
separately. For PALB2, the HR per SD in carriers was 1.81 (95%
CI 1.34–2.44, p= 1.05 × 10−4), in carriers of CHEK2, 1.86
(1.60–2.16, p= 6.58 × 10−16), and in carriers of neither the
PALB2 nor the CHEK2 mutation, the HR was 1.71 (1.67–1.74,
p < 1.00 × 10−300). Similarly, in a formal test for interaction by
introducing an interaction term in the regression model, we
found no evidence of an interaction between the PRS and

mutations for neither the PALB2 variant (p= 0.18), nor the
CHEK2 variant (p= 0.45).

PRS refines risk assessment in first-degree relatives. Next, we
evaluated how the PRS modifies the risk conferred by a positive
first-degree family history. Family history was assessed in 7715
mother–daughter pairs and 12,086 pairs of sisters, separately for
family history of early-onset (age < 45) and late-onset (age ≥ 45)
breast cancer. For both, PRS stratified women for breast cancer
risk, but the stratification was more pronounced in family history
of early-onset disease (Fig. 3 and Supplementary Table 4).
Women with an average PRS (between the 10th and 90th per-
centiles) and positive family history of early-onset breast cancer
had a lifetime risk at 32.5% (95% CI 24.0–41.0%) – a risk similar
to women with a high PRS (>90th percentile) in the full dataset
(32.5%, 31.6–33.4%). A combination of family history of early-
onset breast cancer and a high PRS further increased the risk to
49.0% (30.1–67.9%), but with only one breast cancer case in the
bottom decile we were unable to estimate the impact of a low
PRS. We then tested whether family history adds to risk assess-
ment if we know the woman’s PRS. When adjusting with a
continuous PRS, the effect size for family history of early-onset
breast cancer was attenuated, from HR 2.80 (95% CI 1.81–4.33,
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Fig. 1 Geographic variation in genetic risk. The risk is compared to age-standardised breast cancer incidence. The proportion of women with the breast
cancer polygenic risk score (PRS) above the 90th percentile in each region is estimated with respect to the PRS distribution of the whole country. The
PALB2 and CHEK2 maps show across different regions the proportion of women carrying at least one risk allele for the variants. The areas represent region
of birth obtained from Statistics Finland. The national breast cancer incidence in women was obtained from the Finnish Cancer Registry (publicly available
at https://cancerregistry.fi/statistics/) with diagnosis C50 (International Classification of Diseases for Oncology, 3rd edn, ICD-O-3). The incidence
represents the mean of 5-year age-standardised incidences (based on the 2014 Finnish population, calculated for each hospital district over 1998–2007).
The mean and standard deviation were calculated over the different regions. Variants: rs180177102 (c.1592delT) for PALB2 and rs555607708 (c.1100delC)
for CHEK2. CHEK2 and polygenic risk score plots are based on 122,978 women, and PALB2 on 109,371 women. Colour contrasts were chosen approximately
based on the standard deviation for each map.

Table 2 Risk for breast cancer events in the population in carriers of the PALB2 and CHEK2 frameshift mutations, and in the top
decile of the polygenic risk score (PRS).

PALB2 CHEK2 PRS > 90%

Number of individuals 336 1648 12,298
Number of cases 84 214 1821
Lifetime risk of breast cancer, % (95% CI) 56.1 (50.8–61.4) 31.7 (29.5–33.9) 32.5 (31.6–33.4)
Mean age at disease onset in cases (SD) 53.1 (10.4) 56.5 (12.0) 57.8 (11.3)

Lifetime risk was estimated by age 80. The variants were rs180177102 (c.1592delT) for PALB2 and rs555607708 (c.1100delC) for CHEK2. The PALB2 analysis was done in 109,371 women, and the CHEK2
and PRS analyses in 122,978 women.
CI confidence interval, SD standard deviation.
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p= 4.08 × 10−6), to HR 2.32 (1.50–3.60, p= 1.72 × 10−4). Also
for late-onset, the association was attenuated, from HR 1.30
(1.07–1.57, p= 0.01), to HR 1.09 (0.90–1.33, p= 0.37).

High PRS increases risk for contralateral breast cancer. Lastly,
we tested the association between the PRS contralateral breast

cancer among breast cancer patients. With PRS between the 10th
and 90th percentile as reference, a high PRS (>90th percentile)
was associated with risk of contralateral breast cancer with HR
1.60 (95% CI 1.25–2.04, p= 0.0002), with 97 individuals out of
1604 cases with a high PRS being diagnosed with contralateral
breast cancer.

Discussion
Using large-scale biobank data combining longitudinal nation-
wide health registry data with genomic information, we show that
over the life course, the breast cancer PRS strongly alters the
breast cancer incidence in high-impact mutation carriers. After
breast cancer diagnosis, individuals with an elevated PRS have an
increased likelihood of developing contralateral breast cancer, and
the PRS can considerably improve risk assessment among their
female first-degree relatives.

The breast cancer PRS strongly altered the risk of breast cancer
in PALB2 and CHEK2 mutation carriers, substantially increasing
the risk of breast cancer in women with a high PRS, and lowering
the risk in women with a low PRS. Deciding on appropriate
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Fig. 2 The impact of polygenic risk in PALB2 and CHEK2 mutation carriers. Adjusted survival curves showing how the polygenic risk score (PRS) affects
the breast cancer risk conferred by the PALB2 (panel A) and CHEK2 (panel B) frameshift mutations. Population level was defined as women with PRS
between the 10th and 90th percentiles. The PALB2 analysis was done in 109,371 women and CHEK2 analysis in 122,978 women. Adjusted survival curves
Cox proportional hazards model.

Table 3 Impact of polygenic risk score (PRS) on the breast cancer risk conferred by the PALB2 frameshift mutation.

HR (95% CI) p value Lifetime risk, % (95% CI) Cases Controls

PALB2 & PRS >90% 11.8 (6.95–20.0) 5.14 × 10−20 83.9 (71.2–96.6) 14 18
PALB2 4.82 (3.77–6.16) 5.66 × 10−36 55.3 (49.4–61.2) 65 211
PRS 10–90% 1.00 (reference) – 16.0 (15.8–16.2) 5605 81,645
PALB2 & PRS <10% 4.00 (1.66–9.63) 0.002 49.1 (30.6–67.6) 5 23

Population level was defined as women with PRS between the 10th and 90th percentiles. The estimates were obtained from a Cox proportional hazards model on 109,371 women, without adjusting for
multiple comparisons. All tests were two-tailed.

Table 4 Impact of polygenic risk score (PRS) on the breast cancer risk conferred by the CHEK2 frameshift mutation.

HR (95% CI) p value Lifetime risk, % (95% CI) Cases Controls

CHEK2 & PRS >90% 5.71 (4.33–7.52) 5.31 × 10−35 59.2 (52.1–66.3) 51 133
CHEK2 2.12 (1.81–2.48) 2.35 × 10−20 29.3 (26.8–31.8) 158 1163
PRS 10–90% 1.00 (reference) – 15.3 (15.1–15.5) 6116 90,945
CHEK2 & PRS <10% 0.58 (0.24–1.41) 0.23 9.3 (4.5–14.1) 5 138

Population level was defined as women with PRS between the 10th and 90th percentiles. The estimates were obtained from a Cox proportional hazards model in 122,978 women, without adjusting for
multiple comparisons. All tests were two-tailed.

Table 5 To test for interaction in all 122,978 women, we
compared the polygenic risk score (PRS) effect size in
pooled mutation carriers (pooling PALB2 and CHEK2) and in
non-carriers.

PRS < 10% PRS 10–90% PRS > 90%

Mutation 0.42 (0.23–0.79) 1.00 (reference) 2.44 (1.82–3.28)
No mutation 0.38 (0.34–0.43) 1.00 (reference) 2.37 (2.25–2.50)

The table shows the hazard ratios and 95% confidence intervals for the bottom and top deciles,
comparing them to women with an average risk (PRS between the 10th and 90th percentiles).
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surveillance and risk-reduction strategies is a clinical challenge
particularly for moderate-risk mutations such as those in
CHEK213, and our results show that additional information
provided by the PRS could guide in these decisions. A combi-
nation of breast cancer PRS in the top decile and a mutation in
the CHEK2 variant increased the lifetime risk to 59% – a risk
comparable to that seen in PALB2 mutation carriers – whereas
those with a PRS in the bottom decile had a risk similar to the
population level.

That PRS modifies the risk in PALB2 and CHEK2 mutation
carriers supports previous findings suggesting that common
genetic variation at least partly explains the widely observed
incomplete penetrance of mutations in breast cancer suscept-
ibility genes14–17. This variation is now measurable on an indi-
vidual level with the breast cancer PRS, which captures a wide
range of molecular pathways. Our results are in line with previous
studies on BRCA1, BRCA2, PALB2 and CHEK2 mutation carriers,
but these studies have used a case–control setting or PRSs con-
sisting of <100 variants16–19. We conducted the study in a large
longitudinal dataset with 120,000 women, using a more pre-
dictive, genome-wide PRS and leveraging the considerable
enrichment of the PALB2 and CHEK2 variants in an isolated
population. With the longitudinal setting, we were also able
quantify the lifetime risk in PALB2 and CHEK2 mutation carriers
based on observed events over the life course, instead of calcu-
lating them using baseline risks from published studies17,18.

Harbouring pathogenic mutations in high-risk breast cancer
susceptibility genes often prompt intensified medical surveillance
and consideration of preventative procedures such as risk-
reducing surgery. The lifetime risk estimates for individuals in
the top decile of the PRS was comparable to CHEK2 mutation
carriers – both had a risk of 32% by age 80. Considering this, our
results also argue for the need of studies on the impact of targeted
actions in women with a high PRS only, who currently go
undetected. After the diagnosis, patients with elevated PRS had a
1.6-fold elevated risk for contralateral cancer, providing addi-
tional evidence of increased breast cancer susceptibility, a finding
that might warrant intensified or prolonged surveillance in breast
cancer cases with elevated PRS. This finding is in line with earlier

studies showing that familial factors contribute to the risk of
contralateral breast cancer20–22.

The proportion of mutation carriers and the elevated PRS
showed differing geographical distributions. While the elevated
PRS distribution followed the breast cancer incidence distribution
with highest rates in the early-settlement region in South-
Western Finland, the allele frequencies for the PALB2 and
CHEK2 mutations were highest in the late-settlement region in
Eastern Finland. It is likely that the PALB2 and CHEK2mutations
have survived both the founder bottleneck in Finland, and the
internal bottleneck in the Eastern Finland, therefore being heavily
enriched in the Finnish population. These regional differences in
both PRS and mutation frequency distributions may have an
impact on regional screening strategies.

Finally, the PRS improved risk assessment of first-degree
relatives of women with breast cancer, with pronounced stratifi-
cation particularly for family history of early-onset disease.
Family history is an essential factor guiding screening strategies of
family members of breast cancer patients23, and our results show
that PRS could improve the precision of this assessment.

Our study has several limitations. Our findings are limited to
individuals of European ancestry and it is important to study the
applicability of the results in individuals of admixed and non-
European ancestry24. The FinnGen study is a mixture of
population-based cohorts and samples from hospital biobanks. It
is possible that the sampling may introduce biases in some of the
estimates. We observed a slightly higher baseline risk compared
to the NORDCAN database25. However, our key PRS estimates
were similar when estimated in a FinnGen subset of population-
based cohorts only. Moreover, accounting for the competing risk
of mortality from other causes yielded slightly lower estimates for
lifetime risks.

In conclusion, we show that a high breast cancer PRS comes
with a comparable risk profile to frameshift mutations in breast
cancer susceptibility genes PALB2 and CHEK2, and that the PRS
strongly modifies breast cancer risk in the mutation carriers. Even
after the breast cancer diagnosis, the PRS was associated with
breast cancer susceptibility by increasing the risk of contralateral
breast cancer, and it considerably improved risk assessment
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Fig. 3 Impact of the polygenic risk score (PRS) in estimating the breast cancer risk of women with a first-degree relative diagnosed with breast cancer.
a Shows the impact of family history of early-onset breast cancer, and b the impact of family history of late-onset breast cancer. Adjusted survival curves
based on Cox proportional hazards models. Risk estimated in 7715 mother–daughter pairs and 12,086 full sibling-pairs (sisters). The pairs of first-degree
relatives were inferred with KING by a kinship coefficient ranging between 0.177 and 0.354 (inference based on 57 K unlinked variants). Due to the sample
size, we were unable to assess impact of a low PRS (<10th percentile) with early-onset family history.
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among the patient’s first-degree relatives. These results demon-
strate opportunities for a more comprehensive way of assessing
genetic risk in the general population, in breast cancer patients
and in unaffected family members of breast cancer patients.
Optimisation of these strategies in the clinical setting warrant
further study.

Methods
Participants and endpoints. The data comprised of 122,978 Finnish women in the
FinnGen, Data Freeze 5. FinnGen comprises prospective epidemiological cohorts
(initiated as far back as 1992), disease-based cohorts, and hospital biobank samples
(Supplementary Table 5). The unique national personal identification number links
the genotypes to the Finnish Cancer Registry (available from 1953, with nationwide
completeness of solid tumours at 96%26), as well as to the national hospital dis-
charge registry (1968-), the national death registry (1969-) and the medication
reimbursement registry (1964-). These registries cover the whole population.

Breast cancer cases were identified through the Finnish Cancer Registry with
diagnosis C50 (International Classification of Diseases for Oncology, 3rd Edition;
ICD-O-3), from the drug reimbursement registry by selecting individuals with a
reimbursement code for breast cancer, and from the death registry with ICD-10
C50. Contralateral breast cancer was defined as breast cancer in the opposite breast
diagnosed over 6 months after the date of the primary breast cancer diagnosis,
obtained from the Cancer Registry.

Genotyping and imputation. FinnGen samples were genotyped with Illumina and
Affymetrix arrays (Illumina Inc., San Diego, and Thermo Fisher Scientific, Santa
Clara, CA, USA), and genotype calls were made with the GenCall or zCall (for
Illumina) and the AxiomGT1 algorithm for Affymetrix data. Individuals with
ambiguous gender, high genotype missingness (>5%), excess heterozygosity
(+-4SD) and non-Finnish ancestry were excluded, as well as all variants with high
missingness (>2%), low Hardy–Weinberg equilibrium p-value (<1e-6) and minor
allele count (MAC < 3). Array data pre-phasing was carried out with Eagle 2.3.527

with the number of conditioning haplotypes set to 20,000. Genotype imputation
was done with Beagle 4.128 (as described in https://doi.org/10.17504/protocols.io.
xbgfijw) by using the SISu v3 population-specific reference panel developed from
high-quality data for 3,775 high-coverage (25-30x) whole-genome sequences
in Finns.

Variants. We chose two previously reported Finnish-enriched frameshift variants
for our main analyses, rs180177102 (c.1592delT) in PALB2 and rs555607708
(c.1100delC) in CHEK2. Genotype data batches with an imputation INFO score
<0.8 were excluded. This excluded 13,607 women from analyses involving the
PALB2 variant (mainly older disease-based cohorts), but no exclusions were needed
for CHEK2. PALB2 mutation carrier status was ignored in analyses involving the
CHEK2 variant, and vice versa. Women homozygous for the CHEK2 variant were
analysed jointly with the heterozygotes.

Polygenic risk score. To choose our breast cancer PRS, we compared three scores:
(1) a previously published PRS with 313 SNPs7, (2) another previously published,
genome-wide PRS10 built with the software LDpred29 and (3) a genome-wide PRS
we built with the software PRS-CS (PRS-CS-auto, with 1000 Genomes Project
European sample, N= 503, as the external LD reference panel) using HapMap3
variants11. For the LDpred and PRS-CS PRSs, the input weights came from a large
independent genome-wide association study (GWAS)6. To have a PRS indepen-
dent of the PALB2 and CHEK2 variants, we excluded the variants within the
CHEK2 gene ±3Mb, and variants within the PALB2 gene ±2Mb (Supplementary
Fig. 4). Out of these three, the PRS-CS score showed the strongest association for
breast cancer and was therefore chosen for subsequent analyses (Table 1 and
Supplementary Table 1). All three PRSs showed acceptable goodness-of-fit (Sup-
plementary Fig. 5). The final variant count for the PRS-CS PRS with PALB2 and
CHEK2 excluded was 1,074,667.

A high PRS was defined as a PRS above the 90th percentile, as it corresponds to
a lifetime risk of ≥30%, which guidelines consider as the threshold for high risk23.
Correspondingly, we defined a PRS below the 10th percentile as a low PRS.
Individuals between the 10th to 90th percentiles served as the reference category.

Geographic variation. Geographic variation is reported by region of birth
(obtained from Statistics Finland) as the proportion of individuals with (1) the
frameshift mutations in the PALB2 or CHEK2 variants, and (2) high PRS (>90th
percentile). The benchmark for these analyses was age-standardised (age in 2014)
breast cancer incidence for the whole Finnish population, calculated as the mean of
5-year incidences for each hospital district over 1998–2007. The incidence data was
obtained from the Finnish Cancer Registry (publicly available at https://
cancerregistry.fi/statistics/). Polygon data for the Finnish map were obtained from
GADM (https://gadm.org/data.html).

Population structure-related bias analysis. A population structure-related bias
analysis was performed by following the approach described in detail in Kerminen
et al.30. In brief, the method measures the accumulation of PRS differences between
the Western and Eastern subpopulations of Finland using a “random PRS”, made
from a randomly chosen set of independent (r2 < 0.1) variants with minor allele
frequency >0.05 that are not associated with breast cancer (breast cancer GWAS6

p-value >0.5). If such random PRS accumulated differences between the sub-
populations, that could indicate a population genetic bias in effect estimates of the
GWAS, rather than a real difference in genetic susceptibility of breast cancer
between the subpopulations. We found no evidence of such bias (Supplementary
Fig. 6), which indicates that any detected geographic variation in the PRS is
unlikely to result from a population genetic bias.

Risk assessment in first-degree relatives. The pairs of first-degree relatives were
inferred with KING v2.2.431 by a kinship coefficient ranging between 0.177
and 0.354 (inference based on 57 K unlinked variants). To analyse the impact of
family history in first-degree relatives, we randomly sampled one female relative for
each woman who had at least one first-degree relative in the dataset. For
mother–daughter pairs, the mother was assigned as the index relative. For sisters,
we randomly assigned one to be the index relative, irrespective of age. If both
women in the pair were breast cancer cases, we used the year of diagnosis to assign
the woman diagnosed earlier as the index. Some individuals appeared several times
as non-index individuals, which may occur when, for instance, a woman is the
daughter of one index individual and the sister of another – we therefore randomly
sampled the data to contain each non-index individual only once. We then inferred
the risk of breast cancer in these unique non-index individuals. We analysed
separately family history of early-onset (age < 45) and late-onset (age ≥ 45)
breast cancer.

Statistical analysis. We estimated HRs and 95% CIs with the Cox proportional
hazards model, and used Schoenfeld residuals and log–log inspection for assessing
the proportional hazards assumption. Start of follow-up was set at birth, and
follow-up ended at the first record of the endpoint of interest, death or at the end of
follow-up on 31 December 2018, whichever came first. All tests were two-tailed. In
all survival analyses, we used age as the time scale, with 63 batches and the first 10
principal components as covariates. The only exception was the analysis on con-
tralateral breast cancer, where follow-up started from the diagnosis, and age was
included as a covariate.

Goodness-of-fit for the PRS was assessed with a method proposed by May &
Hosmer for a Cox proportional hazards model32. In line with previous studies on
breast cancer susceptibility genes, we assessed lifetime risk (cumulative incidence
without competing risks) by age 8014,33. Lifetime risk was estimated from the
adjusted survival curves, with 95% CIs obtained by normal approximation. The
adjusted survival curves were plotted with the R package survminer. This presents
the expected survival curves separately for subgroups, based on the Cox model. To
estimate the covariate-adjusted cumulative incidence functions in the presence of
competing risks, we used the Stata module stcompadj34. The competing event was
non-breast cancer causes of death and covariates were assumed to have similar
effects the main and competing event.

Interactions between the PRS and the pathogenic mutations were assessed (1)
by comparing the PRS effect sizes in pooled and non-pooled mutation carriers and
non-carriers (with the PRS scaled to zero mean and unit variance within the whole
dataset), and (2) formally by introducing an interaction term for the mutation and
the continuous PRS. For data and variant handling and PRS calculation, we used
BCFtools versions 1.7 and 1.9, and PLINK 2.0. For statistical analyses, we used R
3.6.3 and Stata 16.0 (College Station, TX, USA). Cromwell and WOMtool were
used for workflow handling.

Ethics statement. The FinnGen project is approved by the Finnish Institute for
Health and Welfare (THL), approval number THL/2031/6.02.00/2017, amend-
ments THL/1101/5.05.00/2017, THL/341/6.02.00/2018, THL/2222/6.02.00/2018,
THL/283/6.02.00/2019), Digital and population data service agency VRK43431/
2017-3, VRK/6909/2018-3, the Social Insurance Institution (KELA) KELA 58/522/
2017, KELA 131/522/2018, KELA 70/522/2019 and Statistics Finland TK-53-
1041-17.

Patients and control subjects in FinnGen provided informed consent for
biobank research, based on the Finnish Biobank Act. Alternatively, older research
cohorts, collected prior the start of FinnGen (in August 2017), were collected based
on study-specific consents and later transferred to the Finnish biobanks after
approval by Valvira, the National Supervisory Authority for Welfare and Health.
Recruitment protocols followed the biobank protocols approved by Valvira. The
Ethics Review Board of the Hospital District of Helsinki and Uusimaa approved the
FinnGen study protocol Nr HUS/990/2017.

The Biobank Access Decisions for FinnGen samples and data utilised in
FinnGen Data Freeze 5 include: THL Biobank BB2017_55, BB2017_111,
BB2018_19, BB_2018_34, BB_2018_67, BB2018_71, BB2019_7 Finnish Red Cross
Blood Service Biobank 7.12.2017, Helsinki Biobank HUS/359/2017, Auria Biobank
AB17-5154, Biobank Borealis of Northern Finland_2017_1013, Biobank of Eastern
Finland 1186/2018, Finnish Clinical Biobank Tampere MH0004, Central Finland
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Biobank 1-2017 and Terveystalo Biobank STB 2018001. Analyses of potential
geographic bias of PRS were done with THL biobank permission BB2019_44.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The FinnGen data may be accessed through Finnish Biobanks’ FinBB portal (web link:
www.finbb.fi, email: info.fingenious@finbb.fi). The GWAS summary statistics used for
constructing our main PRS are available at http://bcac.ccge.medschl.cam.ac.uk/bcacdata/
oncoarray/oncoarray-and-combined-summary-result/gwas-summary-results-breast-
cancer-risk-2017/, with contact information at http://bcac.ccge.medschl.cam.ac.uk/
contact/. The weights for our main PRS are available at PGS Catalog (pgs-info@ebi.ac.uk)
at https://www.PGSCatalog.org/score/PGS000335/, and the previously published PRSs at
https://www.PGSCatalog.org/score/PGS000004/ and https://www.PGSCatalog.org/score/
PGS000332/. The remaining data are available within the Article, Supplementary
Information or available from the authors upon request.

Code availability
The full genotyping and imputation protocol for FinnGen is described at https://doi.org/
10.17504/protocols.io.xbgfijw.
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